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Abstract—The ubiquitous presence of embedded devices 

coupled with their low processing power and finite energy creates 

unique challenges in the security of embedded systems. Software 

attacks targeted at maliciously modifying the control flow of an 

executing embedded program negatively affect real-time response. 

Hardware-based control flow violation detectors have been 

researched and tested, but still lack the means to recover from 

control flow attacks and provide meaningful data for post cyber-

incident analysis. 

Proposed is a hardware-based system on a chip (SoC) concept 

to protect low-end embedded processors from control flow 

attacks. The concept provides an end-to-end protection 

combination of detection, response, recovery, and tamper evident 

techniques against control flow violations in the presence of 

interrupts, real-time operating systems, and exceptional functions. 

The implemented detection portion of the solution shows promise 

to detect most CRAs on low-end embedded systems without added 

cycle latency at the cost of increased area. 

Keywords—control flow integrity, tamper evidence, sacrificial 

core, detection, response, recovery, embedded systems security 

I. INTRODUCTION 

Attacks on embedded systems aren’t new but are common 
thanks to the rise of the Internet of Things (IoT) and 
improvements in embedded processor technology. To date, 
there is no single source that categorizes attacks on embedded 
systems but lumps them into cybersecurity incidents [1]. Given 
current trends in cybersecurity, global organizations are not fully 
prepared to handle sophisticated cyber-attacks, let alone attacks 
on embedded systems. According to Prevelakis et al. [2] 
worldwide critical infrastructures such as Energy, Finance, 
Food, Water, and Health are vulnerable to embedded system 
attacks and have all been affected by cybersecurity incidents. 

An embedded system’s program control is commonly the 
target of cyber-attacks. Control flow violations in various 
embedded components can lead to arbitrary code execution, 
unauthorized control, and denial of service [3]. Most control 
flow vulnerabilities can be exploited remotely and don't require 
any specialized knowledge or skill [3]. Malicious attempts to 

change an embedded control flow entail program memory 
injection, data memory execution, program counter 
manipulation, or direct injection into the pipeline as in the case 
of Hardware Trojans. A control flow attack can leave a real-time 
system in a non-functioning state, affecting the application and 
environment. 

Low-end embedded systems require the ability to detect, 
respond, recover, and collect tamper evident information on 
control flow attacks. Given their limited core processing power, 
available energy, physical exposure, and network connectivity, 
embedded devices need an integrated hardware-based approach 
to provide a complete real-time security solution while operating 
in an unsupervised environment. 

Proposed is a concept to implement detection, response, 
recovery, and tamper evident hardware circuitry alongside an 
embedded soft-core processor while studying trade-offs to 
obtain different levels of protection. The target embedded 
processor, a low-end Alf and Vegard RISC (AVR) soft-core, and 
security solution are implemented on a Xilinx Field 
Programmable Gate Array (FPGA). The objective is to protect 
the AVR soft-core from exploitable vulnerabilities by detecting 
control flow violations, providing appropriate recovery 
methods, and gathering evidence of the attack to avoid future 
harm to the embedded system environment. 

Section II will elaborate the background needed to 
understand topic significance and hardware concept. Section III 
will describe the proposed hardware concept and section IV will 
present preliminary results. Finally, section V will summarize 
the paper as well provide future work. 

II. BACKGROUND 

A. Embedded Systems Security 

Embedded Systems Security (ESS) stems from Computer 
Security as it applies to embedded systems and its assets. ESS 
reduces vulnerabilities and provides protection against threats to 
embedded system design, hardware, firmware, system software, 
data, communications, and networks. Each of these seven assets 
are a security domain in themselves and together form ESS. 
With trends such as IoT and remotely-controlled industrial 
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systems, embedded systems became less obscure and more 
convenient to attack. 

To aid in fortifying computer security from growing 
computer system vulnerabilities, the Framework for Improving 
Critical Infrastructure Cybersecurity [4] was released in April 
2018. The framework is provided to critical infrastructure 
owners and operators for voluntary use to address the effect of 
cybersecurity on physical, cyber, and people. The framework 
core consists of five functions or basic cybersecurity activities; 
Identify, Protect, Detect, Respond, and Recover. The National 
Institute of Standards and Technology (NIST) developed 
framework can be applied to embedded systems security to 
manage the cybersecurity risk posed to critical infrastructures. If 
a threat to a vulnerability in an embedded device is identified, 
protected from, detected, responded to, and recovered from, then 
the cybersecurity risk to the critical infrastructure is managed. 

 

B. Control Flow Attacks on Embedded Systems 

Control flow attacks encompass code reuse attacks (CRAs) 
and code injection attacks. Using a control flow graph (CFG), 
the steps through a process can be visualized as a set of directed 
edges and nodes. An unaltered process will follow the correct 
forward and backward edges. Any redirection of an edge would 
cause a control flow violation, Fig. 1. 

Software-based control flow attacks exploit vulnerable sub-
routines to alter data on the stack or heap of a processor. 
Vulnerable data that modify control flow include function return 
addresses, function pointers, and setjmp/longjmp data buffers 
stored on the stack. 

CRAs assume the attacker has no control over program 
memory but has enough knowledge about it to create gadgets 
using exploits like buffer overflow. A gadget is a sequence of 
instructions which ends in an indirect branch instruction to a 
target controlled by the attacker. In return-oriented 
programming (ROP), jump-oriented programming (JOP), and 
call-oriented programming (COP), a gadget ends in a return, 
jump, or call instruction respectively. Each gadget is constructed 
from existing words in program memory to perform a small task 

like loading a register or placing contents into memory and then 
setting up the next gadget. Gadgets are strung together to make 
a Turing complete attack linked through return, jump, or call 
instructions. 

Code injection attacks inject instructions directly into 
program memory (PM). On the Von Neumann architecture, data 
and program memory share the same bus and memory space, 
making Von Neumann machines vulnerable to code injection. 
Alternatively, the Harvard Architecture contains separate data 
and program memory areas enforcing the PM to be read-only 
and data memory (DM) to be only used for data. This was true 
until instruction set architectures (ISAs), like AVR, provided 
instructions to load program memory from data memory 
allowing for data as instructions e.g. boot loaders. Boot loader 
instructions allow for code injection attacks to be possible on the 
AVR ISA by first launching a CRA through a buffer overflow 
exploit [5]. 

 

C. Hardware-Based Control Flow Integrity 

A hardware-based control flow integrity (CFI) solution is 
required to reduce the impact on compute time to detect control 
flow violations. CFI focuses on maintaining the integrity of a 
CFG, constructed from analyzing a program’s binary, using 
backward and/or forward edge policies. 

Backward edge policies focus on protecting a program’s 
control flow from CRAs that corrupt the return address of a 
function (e.g. ROP). There are various ways to implement a 
backward edge policy, but the most popular and recommended 
as necessary in [6] is to use a shadow call stack (SCS). An SCS 
is an additional stack implemented in hardware to hold the return 
address of a function call. Upon return, the hardware checks the 
return address on the call stack with the one on the SCS. If 
they're not the same, a potential integrity violation ensued. 
Challenges of a hardware-based SCS include, optimizing the 
hardware buffer size and unrolling the SCS after exceptions like 
longjmp and setjmp [7][8][9]. 

Forward edge policies account for direct and indirect 
addressing. Direct addressing (e.g. call, jump, branch, skip) can 
be obtained from the CFG and instruction itself and are therefore 
not as vulnerable to control flow violations, so long as a CFG is 
maintained. Indirect addressing (e.g. IJMP, ICALL, RET) are 
vulnerable and therefore harder to detect a control flow violation 
within. Rules are then used to constrain the potential target 
address of these instructions. 

Das et al. [9] developed BB-CFI which limits branch targets 
to basic block boundaries. BB-CFI uses a modified set of rules 
to combat exceptions that may arise; (1) CALL can target the 
basic block of a function, (2) RET can only target the basic block 
address of the call site or a basic block for an exception handler, 
(3) IJMP can target a return address or the starting address of a 
basic block, and (4) RET can target any address in the return 
address stack. Rule 2 is directed at C++ exception handling and 
rule 4 applies to multi-threading. Rule 3 addresses longjmp and 
setjmp functions. 

Like most CFI policies [10][11], BB-CFI is integrated into 
the pipeline stages of the ISA and requires metadata for its basic 

 

Fig. 1. Example control flow graph with violation. 
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block control graph from the program's CFG. BB-CFI includes 
an SCS, basic block table, control unit, and buffer containing 
control flow instructions that still need to be validated. Detection 
accuracy suffers if the CFG is not complete. 

Nyman et al. [12] proposed CaRE, a hardware-supported 
CFI solution that is interrupt aware for commercial 
microcontrollers. Low-end microcontroller applications, such as 
IoT, are often interrupt driven to maintain strict timing 
requirements. Most hardware-based CFI solutions [8][9][13] 
fail to mention rules that are interrupt aware. 

Similar to HAFIX [13], CaRE [12] adds instrumentation into 
the program binary trading off increased program binary size 
and execution time for CFI violation detection. 

 

D. Response, Recovery, and Tamper Evidence 

Current hardware-based CFI solutions barely mention any 
response or recovery details other than providing a signal for 
external response [11] or rebooting the entire processor [14]. 
Mao et al. [10] and Thomas [15] do mention response and 
recovery, but both require operating system support. 

In a real-time environment, recovery time is crucial to allow 
the embedded system to resume its functions as quick as 
possible. Ferguson and Gu [16] describe a sensor self-healing 
option implemented on an ATmega128 by embedding 
diversified protection and recovery code at particular locations 
to enforce access control in code memory. The software-based 
solution presented in [16] leads to question the ability to use a 
hardware-based solution to perform a backward error recovery 
through checkpoints [17][18][19]. Backward error recovery 
techniques are based on time redundancy and rely on saving the 
correct processor state. To reduce the area and time overhead, 
careful decisions need to be made on how much of the processor 
context needs to be saved and how often. 

Reducing the impact of recovery can be done by isolating 
the attack and allowing the system to run in a degraded state as 
outlined by Thomas and Abdelwahed [20]. To allow the mission 
critical system to run in a degraded state, the authors proposed 
to route mischievous functionality from a malicious process to a 
sacrificial virtual machine. Embedded systems don’t normally 
have the resources to run a virtual machine but diverting 
malicious functionality to a sacrificial soft-core on an FPGA 
could reduce the negative impact of a full recovery, if one is not 
required. 

III. HARDWARE CONCEPT 

The hardware concept augments an AVR soft-core with a 
security solution on a Xilinx FPGA. The security solution, 
depicted in Fig. 2, contains detection, response, recovery, and 
tamper evident activities to protect from exploitable 
vulnerabilities by detecting control flow violations, providing 
appropriate recovery methods, and gathering evidence of the 
attack to avoid future harm to the embedded system 
environment. Solution objectives include (1) minimize or avoid 
detection latency, (2) minimize system recovery latency, (3) 
minimize embedded system impact of detected activity, (4) 
capture and provide tamper evident data, (5) avoid or minimize 
modifications to existing binaries, (6) avoid altering AVR 

instruction set, and (7) avoid re-synthesis of hardware solution 
to accommodate new program binaries. 

The three main subsystems, target, security, and tamper 
evidence are centered around the AVR soft-core, security unit 
(SU), and sacrificial AVR soft-core (SAC), respectfully. 
Detection, response, and recovery are overseen by the SU which 
also initiates the tamper evident subsystem. The AVR soft-core 
is connected to the program (PM) and data memory (DM) as 
normal but is augmented to provide necessary CFI information 
to aid CFI violation detection and snapshots of its present state 
to aid the recovery process. 

 

A. Offline Metadata Collection and Boot-Up Process 

To aid in detection of control flow violations, metadata from 
an off-line control flow analysis conducted on the program 
binary is loaded into the security memory (SM) through a 
merging process with the FPGA bit stream file. This avoids the 
need to re-synthesize the FPGA bit stream for each new binary. 

Metadata collection includes a static-binary analysis to 
construct a control flow graph and provide basic block, Real-
Time Operating System (RTOS), and setjmp/longjmp usage 
information. Information collected during this process includes: 

 Basic Block beginning and ending address and a flag set 
if it is the first block of a function 

 RTOS start address of the save and restore context 
routines, data to prime each task stack, memory location 
of task identifier, and default operating system shadow 
call stack pointer value 

 

Fig. 2. Block diagram of general protection solution. 
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 Start address of setjmp and address of IJMP instruction 
within longjmp 

 Allowed serviceable interrupt vectors 

 ICALL instruction addresses with corresponding 
allowed targets 

The aassumption is this information is available by 
inspection of the Executable and Linkable Format (ELF) file and 
CFG by an individual with knowledge of how the real-time 
embedded system should behave. 

On boot-up, the metadata is loaded into the SU CFI memory 
(CFI MEM), Basic Block (BB) Content Addressable Memory 
(CAM), and Shadow Call Stack (SCS) from the SM and used 
during the detection process, depicted in Fig. 3. 

 

B. Detection 

As stated in [5], code injection attacks on the AVR platform 
are possible through CRAs. The detection portion for this 
system, therefore, focuses on detecting control flow violations 
through the use of code reuse attacks, specifically those that 
target call, jump, and return instructions. The detection system, 
shown in Fig. 3, is similar to other CFI solutions in that it makes 
use of a basic block table, shadow call stack, and control unit, 
but other restrictions, exceptions, and improvements were made. 
Table I summarizes the basic rules used in most CFI solutions 
[8][9]. 

TABLE I.  BASIC CFI RULES 

Basic Rules 

1. ICALL targets function entry 

2. IJMP targets a basic block 

3. RET targets the address following the corresponding CALL 

4. CALL-RET pairing is enforced 

 

The basic CFI rules listed in Table I cover the majority of 
normal control flow programs, but there are exceptional cases 
that break the normal control flow. The sections below describe 
the complete detection ruleset implemented in our solution and 
calls out what was an addition, exception, or restriction. 

1) ICALL target addresses (TAs) must target the first basic 

block of a function. Upon ICALL execution, the TA is provided 

to the BB CAM which provides an address into the basic block 

table resident in the SM. The target basic block information 

then provides a flag as to whether the target is function block 

or not. A restriction on this rule is if the basic block containing 

the ICALL instruction has specified Allowed Indirect Target 

Addresses (AITAs), then the ICALL instruction must target one 

of the specified targets. BB REG within Fig. 3 holds 

information on the current executing basic block in order to 

provide the AITAs. BB REG is updated based on the current 

executing control transfer instruction. 

2) IJMP target addresses must target a basic block entry. 

Upon IJMP execution, the TA is provided to the BB CAM 

which provides a signal to determine if the address is a basic 

block or not. IJMP instructions within setjmp and longjmp 

routines do not set off a violation as they target basic block 

entries, but subsequent RET instructions cause false positive 

violations because the stack is unwound and the SCS is not 

updated during longjmp executions. To restrict possible IJMP 

targets of a setjmp buffer violation, the detection solution is 

implemented with a SetJmp (SJ) CAM which is updated with 

the current TA, Stack Pointer (SP), Task Identifier (TID), and 

Shadow Call Stack Pointer (SCSP) on each call to setjmp. A 

restriction on the original rule is an IJMP instruction within a 

longjmp function must target the corresponding setjmp buffer 

for a TA/SP/TID pair. If found, the SCSP is provided to unroll 

the SCS to when the setjmp function was called. 

3) RET and RETI instructions must always target the top of 

the SCS. To support the RETI instruction, an addition was to 

monitor interrupts and place the Program Counter (PC) onto the 

SCS each time an interrupt occurred. 

4) CALL-RET pairing is enforced. The address following a 

CALL/RCALL/ICALL is put onto the SCS to enforce CALL-

RET pairing. The first exception to this rule is any 

 

Fig. 3. General detection solution. 
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CALL/RCALL to setjmp. The function setjmp will always 

remove the PC from the stack and then invoke an IJMP 

instruction. The second exception is any 

CALL/RCALL/ICALL to a target immediately following the 

instruction. This is primarily seen in the form of RCALL+0 

instructions when room needs to be made on the stack for a 

short buffer. An addition to the orginal rule is when setjmp is 

called, the SJ CAM is updated with the current 

PC/SP/TID/SCSP to support subsequent calls to longjmp, as 

described in rule 2. Recursive function calls are supported with 

the use of a recursive counter appended onto each entry within 

the SCS, similar to the work described in HAFIX [13]. This 

reduces the required size of a SCS. 

5) (Addition) Servicable Interrupts are restricted to 

specific allowed interrupt vectors. Upon an interrupt, the 

interrupt vector address is checked against the allowed interrupt 

vectors identified in CFI MEM. 

6) (Addition) Hardware-Based SCS is RTOS aware through 

the CFI MEM loaded with the metadata from the offline 

analysis. Rules 1 through 5 are supported through the current 

active SCS, where applicable. The SCS is divided into 17 stacks 

to support 16 tasks and 1 Operating System (OS) stack. Active 

SCS is maintened by control flow transfers to special OS 

functions called saveContext and restoreContext. Most RTOS 

implementations will have these functions. A CALL/RCALL 

to saveContext changes the TID input into the SCSP register to 

the OS and saves the current PC on the OS SCS at the default 

OS SCSP while a JMP/RJMP to saveContext just changes the 

TID. A CALL/RCALL to restoreContext changes the TID input 

into the SCSP register to the current RTOS TID and saves the 

current PC onto the task SCS while JMP/RJMP just changes the 

TID to the RTOS TID. 
 

C. Response and Recovery 

Before each valid CALL instruction, a snapshot of the core 
is taken. Upon CRA detection, a previous valid snapshot is 
loaded into the AVR core and the core continues processing 
from a state before the attack happened. If the same CRA is 
encountered, then a reset occurs to clear the DM. If a code 
injection attack is detected, partial or whole portions of the 
program memory will be reloaded from the program memory 
backup (PMB) to recover the system to a usable state. As an 
added benefit, code integrity can be checked against the PMB as 
each instruction word leaves the PM. 

 

D. Tamper Evidence 

The default response to a detection is to isolate impact of the 
malicious software from the rest of the application using a 
similar idea proposed by Thomas and Abdelwahed [20]. The 
tamper evident system is composed of a sacrificial AVR soft-
core loaded with checkpoint data taken at time of detection prior 
to the AVR soft-core recovery. The SAC objective is to collect 
information on the malicious process for post cyber-incident 
analysis while allowing the embedded core to continue 
operating with a reduced negative impact. If anything can be 

learned as to why this attack happened, the binary can be fixed 
on future updates. 

While the AVR core is recovered, the SAC is enabled and 
allowed to run. For detected CRAs, the SAC has read access to 
the same program memory. To maintain read-read and write-
read data properties while reducing area overhead and recovery 
latency, all reads and writes from the SAC to the DM will be 
through the SAC DM. The SAC DM uses a page table to map 
reads and writes to the data memory. To maintain the illusion 
that the malicious process is running undetected, the sacrificial 
core's IO will be spoofed. The SAC's decoded instructions and 
program counter will be stored on external storage through the 
data output unit (DOU) to aid post-cyber incident analysis. 

Recovered code injection attacks overwrite the PM and no 
longer allow the SAC to process from the same PM as the AVR 
core. The SAC PM will be loaded with the contents of the AVR's 
PM to preserve the function of the SAC. 

IV. PRELIMINARY RESULTS AND DISSCUSSION 

Implementation thus far has included the offline metadata 
collection and CFI detection system with hooks for response and 
recovery as well as tamper evidence. Table II shows how well 
the hardware concept has met the requirements thus far. 

TABLE II.  HARDWARE CONCEPT REQUIREMENTS 

Requirement Result 

1. Minimize or avoid detection latency Avoided 

2. Minimize system recovery latency Pending 

3. Minimize embedded system impact of detected activity Pending 

4. Capture and provide tamper evident data Pending 

5. Avoid or minimize modifications to existing binaries Avoided 

6. Avoid altering AVR instruction set Avoided 

7. Avoid re-synthesis of hardware solution to accommodate 

new program binaries. 

Avoided 

 

The hardware concept avoids any added latency to the 
program’s execution time. The control flow integrity violation 
detection analyzes each executed control flow instruction of 
interest in real-time. A violation is reported, if found, at the end 
of the execution cycle for the current instruction. For example, 
if a RET instruction targets an address not on top of the SCS, a 
violation is flagged on the last cycle of the RET instruction 
before the next instruction pointed to by the violated PC has a 
chance to execute. 

Integrated into the instruction pipeline, the CFI violation 
detection system does not require altering the AVR instruction 
set or modifying existing program binaries to detect control flow 
violations. The offline metadata collection and security memory 
usage accommodate new program binaries without re-
synthesizing the hardware solution, a trade-off of increased area. 

The implemented AVR soft-core, obtained from 
https://opencores.org, is instruction and timing compatible with 
the ATMega103 and modified to include four additional parallel 
ports and watchdog timer. Table III shows the area utilization of 
the detection system compared to just the AVR soft-core in 
terms of Look Up Tables (LUTs), Flip-Flops, and Block 
Random Access Memory (BRAM). 
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TABLE III.  CFI VIOLATION DETECTION AREA UTILIZATION 

Increase Above AVR Soft-Core BB CAM 

LUTs Flip-Flops BRAMs Cells 

98% 171% 8% 1 

361% 564% 8% 256 

 

Indicated in Table III, the size of the BB CAM negatively 
affects area utilization and depends on the number of basic 
blocks. However, the BB CAM positively supports detection 
response avoiding latency for the detection of violated ICALL 
and IJMP instructions. The detection rules search through basic 
block information in parallel to determine if a target address is a 
valid function or basic block. Searching each cell in parallel 
allows detection to complete within the amount of cycles it takes 
the instruction in question to execute at the cost of increased 
area. 

The detection system underwent a security evaluation based 
on the Basic Exploitation Test (BET) described in Carlini et al. 
[6]. The hardware based solution successfully detected hijacked 
RET, ICALL, and IJMP instructions in the presence of bare 
metal programs. As expected, hijacked IJMP instructions that 
targeted an address at the beginning of a basic block went 
undetected, but instead broke CALL-RET pairing and triggered 
a RET instruction violation. Additional BET testing in the 
presence of an RTOS will be complete by the time of the 
conference. 

Additionally, the detection solution did not report false 
positive detections in the presence of interrupts, setjmp/longjmp 
function calls on bare metal programs, and basic usage of an 
RTOS called Femto OS. 

V. SUMMARY 

The two-tiered concept is categorized by code injection 
attacks and CRAs. Within each tier, protection is provided 
through detection, recovery, and tamper evidence. Code 
injection detection on a Harvard architecture requires the 
detection of CRAs with an additional instruction integrity 
checker. Checkpoint rollbacks offer an alternative means to 
recovery for a system attacked through code reuse if a reset is 
not desirable. To recover from code injection, a backup copy of 
the program binary is required. A second copy of the AVR soft-
core is used as a sacrificial core to provide a means for on-line 
data collection of executed malicious instructions. 

The presented hardware based solution shows promise to 
detect most CRAs on low-end embedded systems without added 
cycle latency at the cost of increased area. Future work includes 
remaining implementation and testing of proposed system to 
analyze protection provided versus performance and area 
tradeoffs. 
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