

Hardware Based Detection, Recovery, and Tamper

Evident Concept to Protect from Control Flow

Violations in Embedded Processing

Patrick R. DaSilva

Naval Undersea Warfare Center Division Newport

Newport, RI, U.S.

patrick.dasilva@navy.mil

Paul J. Fortier

Electrical and Computer Engineering Department

University of Massachusetts Dartmouth

North Dartmouth, MA, U.S.

pfortier@umassd.edu

Abstract—The ubiquitous presence of embedded devices

coupled with their low processing power and finite energy creates

unique challenges in the security of embedded systems. Software

attacks targeted at maliciously modifying the control flow of an

executing embedded program negatively affect real-time response.

Hardware-based control flow violation detectors have been

researched and tested, but still lack the means to recover from

control flow attacks and provide meaningful data for post cyber-

incident analysis.

Proposed is a hardware-based system on a chip (SoC) concept

to protect low-end embedded processors from control flow

attacks. The concept provides an end-to-end protection

combination of detection, response, recovery, and tamper evident

techniques against control flow violations in the presence of

interrupts, real-time operating systems, and exceptional functions.

The implemented detection portion of the solution shows promise

to detect most CRAs on low-end embedded systems without added

cycle latency at the cost of increased area.

Keywords—control flow integrity, tamper evidence, sacrificial

core, detection, response, recovery, embedded systems security

I. INTRODUCTION

Attacks on embedded systems aren’t new but are common
thanks to the rise of the Internet of Things (IoT) and
improvements in embedded processor technology. To date,
there is no single source that categorizes attacks on embedded
systems but lumps them into cybersecurity incidents [1]. Given
current trends in cybersecurity, global organizations are not fully
prepared to handle sophisticated cyber-attacks, let alone attacks
on embedded systems. According to Prevelakis et al. [2]
worldwide critical infrastructures such as Energy, Finance,
Food, Water, and Health are vulnerable to embedded system
attacks and have all been affected by cybersecurity incidents.

An embedded system’s program control is commonly the
target of cyber-attacks. Control flow violations in various
embedded components can lead to arbitrary code execution,
unauthorized control, and denial of service [3]. Most control
flow vulnerabilities can be exploited remotely and don't require
any specialized knowledge or skill [3]. Malicious attempts to

change an embedded control flow entail program memory
injection, data memory execution, program counter
manipulation, or direct injection into the pipeline as in the case
of Hardware Trojans. A control flow attack can leave a real-time
system in a non-functioning state, affecting the application and
environment.

Low-end embedded systems require the ability to detect,
respond, recover, and collect tamper evident information on
control flow attacks. Given their limited core processing power,
available energy, physical exposure, and network connectivity,
embedded devices need an integrated hardware-based approach
to provide a complete real-time security solution while operating
in an unsupervised environment.

Proposed is a concept to implement detection, response,
recovery, and tamper evident hardware circuitry alongside an
embedded soft-core processor while studying trade-offs to
obtain different levels of protection. The target embedded
processor, a low-end Alf and Vegard RISC (AVR) soft-core, and
security solution are implemented on a Xilinx Field
Programmable Gate Array (FPGA). The objective is to protect
the AVR soft-core from exploitable vulnerabilities by detecting
control flow violations, providing appropriate recovery
methods, and gathering evidence of the attack to avoid future
harm to the embedded system environment.

Section II will elaborate the background needed to
understand topic significance and hardware concept. Section III
will describe the proposed hardware concept and section IV will
present preliminary results. Finally, section V will summarize
the paper as well provide future work.

II. BACKGROUND

A. Embedded Systems Security

Embedded Systems Security (ESS) stems from Computer
Security as it applies to embedded systems and its assets. ESS
reduces vulnerabilities and provides protection against threats to
embedded system design, hardware, firmware, system software,
data, communications, and networks. Each of these seven assets
are a security domain in themselves and together form ESS.
With trends such as IoT and remotely-controlled industrial

This work was supported by the Naval Undersea Warfare Center, Section

219 Research Program, Anthony Ruffa, program manager.

978-1-7281-5092-5/19/$31.00 ©2019 IEEE

systems, embedded systems became less obscure and more
convenient to attack.

To aid in fortifying computer security from growing
computer system vulnerabilities, the Framework for Improving
Critical Infrastructure Cybersecurity [4] was released in April
2018. The framework is provided to critical infrastructure
owners and operators for voluntary use to address the effect of
cybersecurity on physical, cyber, and people. The framework
core consists of five functions or basic cybersecurity activities;
Identify, Protect, Detect, Respond, and Recover. The National
Institute of Standards and Technology (NIST) developed
framework can be applied to embedded systems security to
manage the cybersecurity risk posed to critical infrastructures. If
a threat to a vulnerability in an embedded device is identified,
protected from, detected, responded to, and recovered from, then
the cybersecurity risk to the critical infrastructure is managed.

B. Control Flow Attacks on Embedded Systems

Control flow attacks encompass code reuse attacks (CRAs)
and code injection attacks. Using a control flow graph (CFG),
the steps through a process can be visualized as a set of directed
edges and nodes. An unaltered process will follow the correct
forward and backward edges. Any redirection of an edge would
cause a control flow violation, Fig. 1.

Software-based control flow attacks exploit vulnerable sub-
routines to alter data on the stack or heap of a processor.
Vulnerable data that modify control flow include function return
addresses, function pointers, and setjmp/longjmp data buffers
stored on the stack.

CRAs assume the attacker has no control over program
memory but has enough knowledge about it to create gadgets
using exploits like buffer overflow. A gadget is a sequence of
instructions which ends in an indirect branch instruction to a
target controlled by the attacker. In return-oriented
programming (ROP), jump-oriented programming (JOP), and
call-oriented programming (COP), a gadget ends in a return,
jump, or call instruction respectively. Each gadget is constructed
from existing words in program memory to perform a small task

like loading a register or placing contents into memory and then
setting up the next gadget. Gadgets are strung together to make
a Turing complete attack linked through return, jump, or call
instructions.

Code injection attacks inject instructions directly into
program memory (PM). On the Von Neumann architecture, data
and program memory share the same bus and memory space,
making Von Neumann machines vulnerable to code injection.
Alternatively, the Harvard Architecture contains separate data
and program memory areas enforcing the PM to be read-only
and data memory (DM) to be only used for data. This was true
until instruction set architectures (ISAs), like AVR, provided
instructions to load program memory from data memory
allowing for data as instructions e.g. boot loaders. Boot loader
instructions allow for code injection attacks to be possible on the
AVR ISA by first launching a CRA through a buffer overflow
exploit [5].

C. Hardware-Based Control Flow Integrity

A hardware-based control flow integrity (CFI) solution is
required to reduce the impact on compute time to detect control
flow violations. CFI focuses on maintaining the integrity of a
CFG, constructed from analyzing a program’s binary, using
backward and/or forward edge policies.

Backward edge policies focus on protecting a program’s
control flow from CRAs that corrupt the return address of a
function (e.g. ROP). There are various ways to implement a
backward edge policy, but the most popular and recommended
as necessary in [6] is to use a shadow call stack (SCS). An SCS
is an additional stack implemented in hardware to hold the return
address of a function call. Upon return, the hardware checks the
return address on the call stack with the one on the SCS. If
they're not the same, a potential integrity violation ensued.
Challenges of a hardware-based SCS include, optimizing the
hardware buffer size and unrolling the SCS after exceptions like
longjmp and setjmp [7][8][9].

Forward edge policies account for direct and indirect
addressing. Direct addressing (e.g. call, jump, branch, skip) can
be obtained from the CFG and instruction itself and are therefore
not as vulnerable to control flow violations, so long as a CFG is
maintained. Indirect addressing (e.g. IJMP, ICALL, RET) are
vulnerable and therefore harder to detect a control flow violation
within. Rules are then used to constrain the potential target
address of these instructions.

Das et al. [9] developed BB-CFI which limits branch targets
to basic block boundaries. BB-CFI uses a modified set of rules
to combat exceptions that may arise; (1) CALL can target the
basic block of a function, (2) RET can only target the basic block
address of the call site or a basic block for an exception handler,
(3) IJMP can target a return address or the starting address of a
basic block, and (4) RET can target any address in the return
address stack. Rule 2 is directed at C++ exception handling and
rule 4 applies to multi-threading. Rule 3 addresses longjmp and
setjmp functions.

Like most CFI policies [10][11], BB-CFI is integrated into
the pipeline stages of the ISA and requires metadata for its basic

Fig. 1. Example control flow graph with violation.

978-1-7281-5092-5/19/$31.00 ©2019 IEEE

block control graph from the program's CFG. BB-CFI includes
an SCS, basic block table, control unit, and buffer containing
control flow instructions that still need to be validated. Detection
accuracy suffers if the CFG is not complete.

Nyman et al. [12] proposed CaRE, a hardware-supported
CFI solution that is interrupt aware for commercial
microcontrollers. Low-end microcontroller applications, such as
IoT, are often interrupt driven to maintain strict timing
requirements. Most hardware-based CFI solutions [8][9][13]
fail to mention rules that are interrupt aware.

Similar to HAFIX [13], CaRE [12] adds instrumentation into
the program binary trading off increased program binary size
and execution time for CFI violation detection.

D. Response, Recovery, and Tamper Evidence

Current hardware-based CFI solutions barely mention any
response or recovery details other than providing a signal for
external response [11] or rebooting the entire processor [14].
Mao et al. [10] and Thomas [15] do mention response and
recovery, but both require operating system support.

In a real-time environment, recovery time is crucial to allow
the embedded system to resume its functions as quick as
possible. Ferguson and Gu [16] describe a sensor self-healing
option implemented on an ATmega128 by embedding
diversified protection and recovery code at particular locations
to enforce access control in code memory. The software-based
solution presented in [16] leads to question the ability to use a
hardware-based solution to perform a backward error recovery
through checkpoints [17][18][19]. Backward error recovery
techniques are based on time redundancy and rely on saving the
correct processor state. To reduce the area and time overhead,
careful decisions need to be made on how much of the processor
context needs to be saved and how often.

Reducing the impact of recovery can be done by isolating
the attack and allowing the system to run in a degraded state as
outlined by Thomas and Abdelwahed [20]. To allow the mission
critical system to run in a degraded state, the authors proposed
to route mischievous functionality from a malicious process to a
sacrificial virtual machine. Embedded systems don’t normally
have the resources to run a virtual machine but diverting
malicious functionality to a sacrificial soft-core on an FPGA
could reduce the negative impact of a full recovery, if one is not
required.

III. HARDWARE CONCEPT

The hardware concept augments an AVR soft-core with a
security solution on a Xilinx FPGA. The security solution,
depicted in Fig. 2, contains detection, response, recovery, and
tamper evident activities to protect from exploitable
vulnerabilities by detecting control flow violations, providing
appropriate recovery methods, and gathering evidence of the
attack to avoid future harm to the embedded system
environment. Solution objectives include (1) minimize or avoid
detection latency, (2) minimize system recovery latency, (3)
minimize embedded system impact of detected activity, (4)
capture and provide tamper evident data, (5) avoid or minimize
modifications to existing binaries, (6) avoid altering AVR

instruction set, and (7) avoid re-synthesis of hardware solution
to accommodate new program binaries.

The three main subsystems, target, security, and tamper
evidence are centered around the AVR soft-core, security unit
(SU), and sacrificial AVR soft-core (SAC), respectfully.
Detection, response, and recovery are overseen by the SU which
also initiates the tamper evident subsystem. The AVR soft-core
is connected to the program (PM) and data memory (DM) as
normal but is augmented to provide necessary CFI information
to aid CFI violation detection and snapshots of its present state
to aid the recovery process.

A. Offline Metadata Collection and Boot-Up Process

To aid in detection of control flow violations, metadata from
an off-line control flow analysis conducted on the program
binary is loaded into the security memory (SM) through a
merging process with the FPGA bit stream file. This avoids the
need to re-synthesize the FPGA bit stream for each new binary.

Metadata collection includes a static-binary analysis to
construct a control flow graph and provide basic block, Real-
Time Operating System (RTOS), and setjmp/longjmp usage
information. Information collected during this process includes:

 Basic Block beginning and ending address and a flag set
if it is the first block of a function

 RTOS start address of the save and restore context
routines, data to prime each task stack, memory location
of task identifier, and default operating system shadow
call stack pointer value

Fig. 2. Block diagram of general protection solution.

978-1-7281-5092-5/19/$31.00 ©2019 IEEE

 Start address of setjmp and address of IJMP instruction
within longjmp

 Allowed serviceable interrupt vectors

 ICALL instruction addresses with corresponding
allowed targets

The aassumption is this information is available by
inspection of the Executable and Linkable Format (ELF) file and
CFG by an individual with knowledge of how the real-time
embedded system should behave.

On boot-up, the metadata is loaded into the SU CFI memory
(CFI MEM), Basic Block (BB) Content Addressable Memory
(CAM), and Shadow Call Stack (SCS) from the SM and used
during the detection process, depicted in Fig. 3.

B. Detection

As stated in [5], code injection attacks on the AVR platform
are possible through CRAs. The detection portion for this
system, therefore, focuses on detecting control flow violations
through the use of code reuse attacks, specifically those that
target call, jump, and return instructions. The detection system,
shown in Fig. 3, is similar to other CFI solutions in that it makes
use of a basic block table, shadow call stack, and control unit,
but other restrictions, exceptions, and improvements were made.
Table I summarizes the basic rules used in most CFI solutions
[8][9].

TABLE I. BASIC CFI RULES

Basic Rules

1. ICALL targets function entry

2. IJMP targets a basic block

3. RET targets the address following the corresponding CALL

4. CALL-RET pairing is enforced

The basic CFI rules listed in Table I cover the majority of
normal control flow programs, but there are exceptional cases
that break the normal control flow. The sections below describe
the complete detection ruleset implemented in our solution and
calls out what was an addition, exception, or restriction.

1) ICALL target addresses (TAs) must target the first basic

block of a function. Upon ICALL execution, the TA is provided

to the BB CAM which provides an address into the basic block

table resident in the SM. The target basic block information

then provides a flag as to whether the target is function block

or not. A restriction on this rule is if the basic block containing

the ICALL instruction has specified Allowed Indirect Target

Addresses (AITAs), then the ICALL instruction must target one

of the specified targets. BB REG within Fig. 3 holds

information on the current executing basic block in order to

provide the AITAs. BB REG is updated based on the current

executing control transfer instruction.

2) IJMP target addresses must target a basic block entry.

Upon IJMP execution, the TA is provided to the BB CAM

which provides a signal to determine if the address is a basic

block or not. IJMP instructions within setjmp and longjmp

routines do not set off a violation as they target basic block

entries, but subsequent RET instructions cause false positive

violations because the stack is unwound and the SCS is not

updated during longjmp executions. To restrict possible IJMP

targets of a setjmp buffer violation, the detection solution is

implemented with a SetJmp (SJ) CAM which is updated with

the current TA, Stack Pointer (SP), Task Identifier (TID), and

Shadow Call Stack Pointer (SCSP) on each call to setjmp. A

restriction on the original rule is an IJMP instruction within a

longjmp function must target the corresponding setjmp buffer

for a TA/SP/TID pair. If found, the SCSP is provided to unroll

the SCS to when the setjmp function was called.

3) RET and RETI instructions must always target the top of

the SCS. To support the RETI instruction, an addition was to

monitor interrupts and place the Program Counter (PC) onto the

SCS each time an interrupt occurred.

4) CALL-RET pairing is enforced. The address following a

CALL/RCALL/ICALL is put onto the SCS to enforce CALL-

RET pairing. The first exception to this rule is any

Fig. 3. General detection solution.

978-1-7281-5092-5/19/$31.00 ©2019 IEEE

CALL/RCALL to setjmp. The function setjmp will always

remove the PC from the stack and then invoke an IJMP

instruction. The second exception is any

CALL/RCALL/ICALL to a target immediately following the

instruction. This is primarily seen in the form of RCALL+0

instructions when room needs to be made on the stack for a

short buffer. An addition to the orginal rule is when setjmp is

called, the SJ CAM is updated with the current

PC/SP/TID/SCSP to support subsequent calls to longjmp, as

described in rule 2. Recursive function calls are supported with

the use of a recursive counter appended onto each entry within

the SCS, similar to the work described in HAFIX [13]. This

reduces the required size of a SCS.

5) (Addition) Servicable Interrupts are restricted to

specific allowed interrupt vectors. Upon an interrupt, the

interrupt vector address is checked against the allowed interrupt

vectors identified in CFI MEM.

6) (Addition) Hardware-Based SCS is RTOS aware through

the CFI MEM loaded with the metadata from the offline

analysis. Rules 1 through 5 are supported through the current

active SCS, where applicable. The SCS is divided into 17 stacks

to support 16 tasks and 1 Operating System (OS) stack. Active

SCS is maintened by control flow transfers to special OS

functions called saveContext and restoreContext. Most RTOS

implementations will have these functions. A CALL/RCALL

to saveContext changes the TID input into the SCSP register to

the OS and saves the current PC on the OS SCS at the default

OS SCSP while a JMP/RJMP to saveContext just changes the

TID. A CALL/RCALL to restoreContext changes the TID input

into the SCSP register to the current RTOS TID and saves the

current PC onto the task SCS while JMP/RJMP just changes the

TID to the RTOS TID.

C. Response and Recovery

Before each valid CALL instruction, a snapshot of the core
is taken. Upon CRA detection, a previous valid snapshot is
loaded into the AVR core and the core continues processing
from a state before the attack happened. If the same CRA is
encountered, then a reset occurs to clear the DM. If a code
injection attack is detected, partial or whole portions of the
program memory will be reloaded from the program memory
backup (PMB) to recover the system to a usable state. As an
added benefit, code integrity can be checked against the PMB as
each instruction word leaves the PM.

D. Tamper Evidence

The default response to a detection is to isolate impact of the
malicious software from the rest of the application using a
similar idea proposed by Thomas and Abdelwahed [20]. The
tamper evident system is composed of a sacrificial AVR soft-
core loaded with checkpoint data taken at time of detection prior
to the AVR soft-core recovery. The SAC objective is to collect
information on the malicious process for post cyber-incident
analysis while allowing the embedded core to continue
operating with a reduced negative impact. If anything can be

learned as to why this attack happened, the binary can be fixed
on future updates.

While the AVR core is recovered, the SAC is enabled and
allowed to run. For detected CRAs, the SAC has read access to
the same program memory. To maintain read-read and write-
read data properties while reducing area overhead and recovery
latency, all reads and writes from the SAC to the DM will be
through the SAC DM. The SAC DM uses a page table to map
reads and writes to the data memory. To maintain the illusion
that the malicious process is running undetected, the sacrificial
core's IO will be spoofed. The SAC's decoded instructions and
program counter will be stored on external storage through the
data output unit (DOU) to aid post-cyber incident analysis.

Recovered code injection attacks overwrite the PM and no
longer allow the SAC to process from the same PM as the AVR
core. The SAC PM will be loaded with the contents of the AVR's
PM to preserve the function of the SAC.

IV. PRELIMINARY RESULTS AND DISSCUSSION

Implementation thus far has included the offline metadata
collection and CFI detection system with hooks for response and
recovery as well as tamper evidence. Table II shows how well
the hardware concept has met the requirements thus far.

TABLE II. HARDWARE CONCEPT REQUIREMENTS

Requirement Result

1. Minimize or avoid detection latency Avoided

2. Minimize system recovery latency Pending

3. Minimize embedded system impact of detected activity Pending

4. Capture and provide tamper evident data Pending

5. Avoid or minimize modifications to existing binaries Avoided

6. Avoid altering AVR instruction set Avoided

7. Avoid re-synthesis of hardware solution to accommodate

new program binaries.

Avoided

The hardware concept avoids any added latency to the
program’s execution time. The control flow integrity violation
detection analyzes each executed control flow instruction of
interest in real-time. A violation is reported, if found, at the end
of the execution cycle for the current instruction. For example,
if a RET instruction targets an address not on top of the SCS, a
violation is flagged on the last cycle of the RET instruction
before the next instruction pointed to by the violated PC has a
chance to execute.

Integrated into the instruction pipeline, the CFI violation
detection system does not require altering the AVR instruction
set or modifying existing program binaries to detect control flow
violations. The offline metadata collection and security memory
usage accommodate new program binaries without re-
synthesizing the hardware solution, a trade-off of increased area.

The implemented AVR soft-core, obtained from
https://opencores.org, is instruction and timing compatible with
the ATMega103 and modified to include four additional parallel
ports and watchdog timer. Table III shows the area utilization of
the detection system compared to just the AVR soft-core in
terms of Look Up Tables (LUTs), Flip-Flops, and Block
Random Access Memory (BRAM).

978-1-7281-5092-5/19/$31.00 ©2019 IEEE

TABLE III. CFI VIOLATION DETECTION AREA UTILIZATION

Increase Above AVR Soft-Core BB CAM

LUTs Flip-Flops BRAMs Cells

98% 171% 8% 1

361% 564% 8% 256

Indicated in Table III, the size of the BB CAM negatively
affects area utilization and depends on the number of basic
blocks. However, the BB CAM positively supports detection
response avoiding latency for the detection of violated ICALL
and IJMP instructions. The detection rules search through basic
block information in parallel to determine if a target address is a
valid function or basic block. Searching each cell in parallel
allows detection to complete within the amount of cycles it takes
the instruction in question to execute at the cost of increased
area.

The detection system underwent a security evaluation based
on the Basic Exploitation Test (BET) described in Carlini et al.
[6]. The hardware based solution successfully detected hijacked
RET, ICALL, and IJMP instructions in the presence of bare
metal programs. As expected, hijacked IJMP instructions that
targeted an address at the beginning of a basic block went
undetected, but instead broke CALL-RET pairing and triggered
a RET instruction violation. Additional BET testing in the
presence of an RTOS will be complete by the time of the
conference.

Additionally, the detection solution did not report false
positive detections in the presence of interrupts, setjmp/longjmp
function calls on bare metal programs, and basic usage of an
RTOS called Femto OS.

V. SUMMARY

The two-tiered concept is categorized by code injection
attacks and CRAs. Within each tier, protection is provided
through detection, recovery, and tamper evidence. Code
injection detection on a Harvard architecture requires the
detection of CRAs with an additional instruction integrity
checker. Checkpoint rollbacks offer an alternative means to
recovery for a system attacked through code reuse if a reset is
not desirable. To recover from code injection, a backup copy of
the program binary is required. A second copy of the AVR soft-
core is used as a sacrificial core to provide a means for on-line
data collection of executed malicious instructions.

The presented hardware based solution shows promise to
detect most CRAs on low-end embedded systems without added
cycle latency at the cost of increased area. Future work includes
remaining implementation and testing of proposed system to
analyze protection provided versus performance and area
tradeoffs.

REFERENCES

[1] Verizon, “2017 data breach investigations report,” Verizon, Tech. Rep.,
2017.

[2] V. Prevelakis, F. Carmona, C. Oprisa, A. Atzmon, V. Vallero, C.
Schlehuber, P. Sifniadis, S. Ioannidis, C. Papachristos, A. Krithinakis, M.
Athanatos, F. Rodriguez, M. Heinrich, E. Mar´ın, X. Masip, S.
Kahvazadeh, K. Lampropoulos, and A. Bartoli, “Report on taxonomy of
the ci environments,” CIPSEC Consortium, Tech. Rep., 2018.

[3] Kaspersky Lab ICS CERT, “Threat landscape for industrial automation
systems in h2 2017,” Online, Kaspersky Lab, Tech Report, Mar. 2018,
accessed: May 31, 2018. [Online]. Available: https://ics-
cert.kaspersky.com/reports/2018/03/26/threat-landscapefor-industrial-
automation-systems-in-h2-2017

[4] CI Cybersecurity, “Framework for improving critical infrastructure
cybersecurity, version 1.1,” National Institute of Standards and
Technology, Tech. Rep., 2018, accessed: Apr. 24, 2018.

[5] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in Proceedings of the 15th ACM conference on
Computer and communications security. ACM, 2008, pp. 15–26.

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T.R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium (USENIX Security 15), pp. 161-176, 2015.

[7] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“HCFI: Hardware-enforced Control-Flow Integrity,” in Proceedings of
the Sixth ACM Conference on Data and Application Security and Privacy,
ACM, 2016, pp. 38-49, 2016.

[8] R. de Clercq and I. Verbauwhede, “A survey of hardware-based control
flow integrity (cfi),” arXiv preprint arXiv:1706.07257, 2017.

[9] S. Das, W. Zhang, and Y. Liu, “A fine-grained control flow integrity
approach against runtime memory attacks for embedded systems,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 11, pp. 3193–3207, 2016.

[10] S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Transactions on Computers, vol. 59, no. 6, pp.
847–854, 2010.

[11] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embedded
processing through hardware-assisted run-time monitoring,” in Proc.
Automation and Test in Europe Design, Mar. 2005, pp. 178–183 Vol. 1.

[12] T. Nyman, J. E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, pp. 259-284, 2017.

[13] L. Davi, M. Hanreich, D. Paul, A. R. Sadeghi, P. Koeberl, D. Sullivan, O.
Arias, and Y. Jin, “HAFIX: Hardware-Assisted Flow Integrity
eXtension,” in Proceedings 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-6, 2015.

[14] A. Francillon, D. Perito, and C. Castelluccia, “Defending embedded
systems against control flow attacks,” in Proceedings of the first ACM
workshop on Secure execution of untrusted code. ACM, 2009, pp. 19–26.

[15] T. M. Thomas, “Hardware monitors for secure processing in embedded
operating systems,” Master’s thesis, University of Massachusetts
Amherst, 2015.

[16] C. Ferguson and Q. Gu, “Self-healing control flow protection in sensor
applications,” IEEE Transactions on Dependable and Secure Computing,
vol. 8, no. 4, pp. 602–616, Jul. 2011.

[17] N. H. Rollins, Hardware and software fault-tolerance of softcore
processors implemented in SRAM-based FPGAs. Brigham Young
University, 2012.

[18] H. M. Pham, S. Pillement, and S. J. Piestrak, “Low-overhead fault-
tolerance technique for a dynamically reconfigurable softcore processor,”
IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179–1192, Jun.
2013.

[19] P. R. C. Villa, R. Travessini, F. L. Vargas, and E. A. Bezerra, “Processor
checkpoint recovery for transient faults in critical applications,” in Proc.
IEEE 19th Latin-American Test Symp. (LATS), Mar. 2018, pp. 1–6.

[20] Z. Thomas and S. Abdelwahed, “Active malware countermeasure
approach for mission critical systems,” in Dependable, Autonomic and
Secure Computing, 15th Intl Conf on Pervasive Intelligence &
Computing, 3rd Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th Intl. IEEE,
2017, pp. 632–638.

978-1-7281-5092-5/19/$31.00 ©2019 IEEE

